

JOINT NETWORK MEET THE PROJECT I EVENT HIFI-ELEMENTS **DEMOBASE** 11:45 - 13:00 Next generation e-vehicle design // OBELICS Α Simulation Toolchain and Proposal for Simulation в Standard // HIFI ELEMENTS C Advanced simulation tools and their use for EV battery design // DEMOBASE Safety Concepts for batteries // OBELICS D From MiL to HiL // HIFI ELEMENTS F Advanced simulation tools and their use for EV С **battery design**, IFPEN contributions: • "1D modelling for module thermal safety simulation", by Martin PETIT • "HIL tests for seamless integration of battery pack in EV", by Joseph MARTIN

1D modelling for module thermal safety simulation

Funded by the European Commission Grant No 723119

- Objectives of 1D modelling:
 - Fast computing model
 - Lumped approach
 - 1 temperature per component
 - <u>Representative of the thermal</u> <u>behavior of the battery pack/module</u>
 - Battery electrothermal model accounting for safety hazard
 - Each technical component is modelled and assembled in a complete system
 - Battery cells
 - Tabs
 - Heat sinks
 - Heat exchangers
 - Firewalls...

→Such a model can be used of design or parameteric studies

models

3P cluster

EMOBAS

Cell safety modelling

- Need of an accurate cell model
 - Thermal/electrical behavior of the cell during thermal runaway
 - Main exothermal reactions taken into account
 - Internal short-circuit
 - Venting
- Calibration thanks to dedicated safety tests performed at INERIS
 - Evaluation of heat released from each reaction
 - Evaluation of cell electrical behavior
 - Evaluation of the amount of gases released

→ Model ready to be used in module simulator

3

1D module simulation

- Thermal calibration
 - Test bench tests
 - Fit of materials thermal properties
 - Heat transfer coefficients
 - Validated on subsystem in INERIS test facilities
 - 3p1s cluster behavior
- Model used to evaluate technical solutions for limiting safety issues
 - Thermal behavior of the module before thermal runaway
 - Effect of water cooling
 - Effect of firewall material choice

Experimental behaviour of the module

HIL tests approach for seamless integration of battery pack in light EV

- But what is a HIL test ?
 - Simulated part:
 - \circ An Amesim[™] EV model exported as a FMU \circ A Simulink[™] model
 - ≻ Real part:
 - \circ A battery $\ensuremath{\text{cell}}$ placed in a climatic chamber
 - A Digatron electrical power cabinet
 - A Digatron BTS-600 battery bench manager
- Objectives of this HIL test:
 - To test a battery cell component with very close operating conditions which would be encountered in a real electric car following normalized driving cycles on the road
 - to validate new battery pack configurations quickly and with low costs.

Advanced simulation tools and their use for EV battery design

6

Advanced simulation tools and their use for EV battery design

Funded by the European Commission Grant No 723119

Advanced simulation tools and their use for EV battery design

Funded by the European Commission Grant No 723119

Advanced simulation tools and their use for EV battery design

- Study parameters:
 - > From the cell: specifications according to the technology, initial SOC and test temperature,
 - > From the pack: number of cell in series (Ns), number of cells in parallel (Np),
 - ➢ From the EV: road speed profile (WLTC, NEDC, Artemis, …)

Example of some results:

> Impact of the pack configuration: number of branches in parallel

Test	Road profile	Temp.	Branches	Iterations	Range	Energy	Final SOC	Remaining
						consumption		range
1	WLTC 3.1	25 °C	4	19	293 km	78 Wh/km	1,5 %	15 km
2	WLTC 3.1	25 °C	3	14	222 km	78 Wh/km	1,1 %	11 km
3	WLTC 3.1	25 °C	2	9	146 km	78 Wh/km	1,5 %	8 km
4	WLTC 3.1	25 °C	1	4	71 km	78 Wh/km	3,9 %	7 km

> Impact of the road profile

Tost	Road profile	Temp.	Branches	Iterations	Range	Energy	Final SOC	Remaining
Test						consumption		range
2	WLTC 3.1	25 °C	3	14	222 km	78 Wh/km	1,1 %	11 km
7	NEDC	25 °C	3	17	194 km	89 Wh/km	0,3 %	8 km
9	HWFET	25 °C	3	9	160 km	107 Wh/km	0,6 %	8 km
10	ARTEMIS_Urb	25 °C	3	62	307 km	56 Wh/km	2,0 %	16 km

Upcoming work: comparison between different cell technologies