

Promoting fire safety in innovating design of electric vehicles: the example of the EU-funded DEMOBASE project

<u>**G. Marlair¹**</u>, A. Lecocq¹, B. Truchot 1 P. Perlo², M. Petit³, D. N'Guyen⁴ & P. Desprez⁴ ¹INERIS, France; ²IFEVS, Italy, ³IFPEN, France, ⁴SAFT, France

5th Int. Conf. On Fires in Vehicles – FIVE 2108, Borås, Sweden, October 3–4, 2018

□ Project ID & Rationale of DEMOBASE

Fire research dedicated strategy and relating commitments in the project

□ Results achieved at 1/3 project time scale

- Focus on analytical approaches
- Status of experimental and modeling approaches

Conclusions/ perspectives

pour un développement durabl

DEMOBASE Project ID and Rationale

Real market penetration of e-mobility worldwide depends on:

- drastic reduction of costs
- increased performances, not forgetting safety (overall, fire safety)
- increased availability
- \Rightarrow faster evaluation and integration of innovative technology of key components of Evs

□ H2020 DEMOBASE project

- DEsign amd MOdeling for Improved Battery Safety and Efficiency
- Organized in a closed loop mode
- Objective:
 - implementation of innovative and continuous process for integration of new active materials, component and cells iin EVS by use of multi-scale modeling and testing integrating battery management, up to performances check on purpose-built real car !

pour un développement durai

DEMOBASE Project ID and Rationale (Cont'd)

- □ UE grant # 769900, RIA type of project
- Priority addressed: GV7-H2020: multilevel modelling and testing of electric vehicles and their components
- Consortium: 11 partners, around lead French battery manufacturer
 - □ Scientific coordination SAFT (F)
 - Project management: K&S GmbH Projektmanagement (G)
 - WP leader safety: INERIS (F)
- □ Estimated project cost: 7,451,520 €
- □ duration: 36 months, started 1st Oct. 2017
- URL: <u>www.demobase-project-eu</u>
- Contact: info@demobase-project.eu

pour un développement durab

Overall organization of the project and relation to safety

FIVE 2018, Boras (S), Marlair et al

The fire safety challenge in relation of the thermal runaway hazard

System safety also needed, BMS duty, but not only

FIVE 2018, Boras (S), Marlair et al

Fire safety research dedicated strategy in the project

Preliminary paperwork (first round completed):

- Accident review
- PRA
- BMS (fire) safety management optimisation (pending)

Experimental approaches on key EV components

- Cell components, battery cells & modules, packaging materials
- Feeding component/cell selection, package design and modeling needs
- Started in 2018

□ Fire safety related Modeling

- Multiphysics, multi-scale, multi-tools approaches, multi-objective
- Pluri-partners synergism seeked for
- Work started at IFPEN, SAFT and INERIS on EES level

pour un développement durai

Preliminary Risk Analysis (EV deployment)

From a full value chain perspective

Methodology based of previous studies

- Review of past accidentology of lithium-ion batteries with a focus on EVs
- Scenario-based PRA, starting from EV/energy storage design to end use and recycling

Already existing studies

maîtriser le risque pour un développement durable

FIVE 2010, DULAS (3), MALIAIL EL AL

Accidentology review: methods

- Examination of incidents/accidents from lithium batteries (LI-ion and Li Metal Polymer) identified from various sources relating to e-mobility
 - Screening existing official databases (eg ARIA), or accessing data originating from blogs (<u>www.wreckedexotics.com/</u>)
 - Expert network use
 - Internet searches with web browsers
 - Purpose-buit database implemented for DEMOBASE partners
- Possible biais in the analysis due to uneven access to info and reliability issues, at world level
- Databases built up in the project did not dig in issues about consumer market batteries, ...)

pour un développement durai

Accidentology: analysis performed vs location in the value chain

Example: partial view of incident logs regarding EVs or hybrid buses during use phase

Incident/ ac- Date		Location	Type of batteries/	Causes	Conse-	Summary of the incident				
cident type			vehicles		quences					
Fire (sto- rage)	016	Santa Bar- bara ²⁵ (USA)	Li-ion Battery pack used in MTD buses	Battery pack internal short caused by dripping water at a storage lo- cation	2 employees received medical at- tention after being ex- posed to smoke	A battery unit used on Metropolitan Transit District buses caught fire during its storage at the MTD maintenance yard. MTD employees noticed smoke coming from the batteries, and at- tempted to put the fire out using dry chemical extinguishers and a Class D Metal extinguisher. Santa Barbara City firefighters and the Hazardous Material Unit were dispatched to the scene. Fire investigators say the fire appears to have been caused by a small amount of waterleaking through the metal roof and onto the batteries, which may have caused an ex- ternal short between the battery terminals.				
Fire (driving)	02/10/2 016	London (UK) ²⁸	Double-decker hy- brid bus	Unknow n	No severe casualties. Driver treated for smoke inha- lation	A double-decker hybrid bus burst into flames outside Liverpool Street Station in London. No passengers were on board at the time, and the driver alighted safely. Videos and pictures show smokes and fire from the rear of the bus. The bus fire was later extinguished by the London Fire Brigade leaving 50 percent of the vehicle destroyed. The cause of the fire was unknow n.				
Fire (driving)	27/07/2 016	Maryland ²⁷ (USA)	Frederick County TransIT bus - Li- ion (fully electric)	Assembly de- fect (failed electrical con- nection near the positive terminal of the battery), tem- perature rise and cells ther- mal runaw ay	No injuries	A fire in the rooftop battery compartment of an electric bus occurred on Sept. 27 when driv- ing (without passengers on board). The driver went out of the vehicle safely. It took one hour to extinguish the fire by Fire and Rescue services. A failed electrical connection near the positive terminal of the battery led to a rise in temperature. The rise in temperature was caused by an improperly crimped wire on the roof of the TransIT buses when they were be- ing assembled. The temperature at the faulty electrical connection led to an increased tem- perature in the nearby battery cells, which then led to "a cascading chain of cell failures". The higher temperature wasn't reported because of a loss of fiber-optic communication be- tw een the battery and a system that monitors data for the vehicle, few days before. The county's four other electric buses were temporarily taken out of service while they were in- spected for similar problems, but were placed back into service when no problems were found. Since the fire, the county has methods to send an alert when temperatures rise and softw are on all buses to notify them when modules fail.				
Fire (no data on phase)	July 2016	Nanjing ²⁸ (China)	Li-ion EV bus bat- tery pack	Short circuit in contact with water	No injuries	The battery pack of an EV bus caught fire after heavy rain. Possible cause is attributed to a short circuit due to water immersion.				

→Similar tables set up for all stages of the EV value chain (design, manufacture, transport, storage, use, recycling)

pour un développement durable

Accidentology review: main observations

- ❑ Some incidents involving Li-ion batteries still arising from mishaps at design/quality control stages (Innovation → risks)
- Thermal and mechanical protection, also positioning of battery important to avoid abuse conditions leading to accidents
 - (nearby fire, car crash of runover, impact with sharp objects on roadways...)
- electrical protection against water/moisture driven short circuit importance also revealed from EV accidentology
- Accidentology also reveals the importance of the alert function in case of EV battery failure to allow fast and safe evacuation of car occupants
- Fire risk management in recycling sites may lead to significant damage in case of fire due to projections of battery components and release of fire brands and toxic smoke
- □ Fire-fighting of battery fire may be very difficult and require training, late reignition of EV batteries after incidents must be anticipated as a potential event
- no sign in our view of increased fire hazard of EVs, as compared to ICE cars, in terms of frequency, but fire hazard typology a bit different and fire prevention & protection need to be customized to EV hazard taxonomy

pour un développement durab

Fire Accidentology review on EVs: a focus on the Tesla models

- Collecting, and sortingTesla cars crash/runover and relating fire events according to incident outcomes have been performed
- □ Analysis in terms of
 - circumstances
 - seriousness
 - comparison with ICE cars (tentative)
- As for all other EVs, Tesla accidents do not necessarily end up by a fire event!

13	Aug. 2017 Lake Forest, CA USA		Car went off the road, crashed into home, setting fire on a garage	Driver injured	
14	Oct. 2017, Austria	Model S	Post crash fire after car hit concrete barrier on the side of a road, 35 firefighters tackled the blaze		
15	March 2018, Mountain View, CA, USA	Model X	Post-crash fire involving a Tesla car and involving 2 other vehicles Autopilot implication questioned (it was in use), speed increased from 100 to 114 km/h 3 seconds before crash Reignition of car wreckage5 days after the incident	Driver killed	
16	May 10 th , 2018, A2 motorway, Ticino, (Switzerland)	Model S	Car caught fire after hitting crash barrier in central reservation of the motorway	German driver killed	

pour un développement durable

Tesla EV fires: some trends and statistics

- Models investigated: Tesla Roadster (Lotus platform), Model S, (sedan) Model X (SUV), Model 3
- 21 reported fires, most info from web sites and Tesla media reports + one scientific report (about 3 first scenarios in USA and Mexico)
 - need to be related to some 300,000 -350,000 Tesla cars sold so far in some 5 years
 - some 150,000 car fires in USA, some 30,000 car fires in France on a annual basis
 - 131 Tesla car crashes/overturn reported (<u>www.wreckedexotics.com/</u>)
 - Model S: 79 ; Model X: 16 ; model 3: 3; model Roadster: 34
 - 100% of fire deaths in Tesla fires are relating to post crash fires, currently

To be noted: early recall of over 400 Roadster 2010 model cars for fire hazard reasons pertaining to inadequate battery cable routing

Tesla post-crash fire events/vs all Tesla post-crashes (with/without fire event)trend: ~ 12,5% comparison with ICE car fire trends from NFPA 2010 stats:

- post crash fires: 3% of all vehicle fires holding for 58% of vehicle fire deaths

pour un développement durable

FIVE 2010, DUIAS (3), Marian et al

PRA update from original INERIS study: scope, methods and followup

- Re-rating previously identidied scenarii seriousness making use of a risk matrix from inital 2011 study (revised already in 2013)
- Completing analysis in terms of new pertinent incident scenario deserving examination at light of field experiene
- Back-up info to all stakeholders of DEMOBASE, according to involvment in concerned EV building-blocks for due consideration

In concerned EV building-blocks	Risk manage- ment level	1	2	3	4
for due consideration	Maturity	Very good man- agement of the risk	Good manage- ment of the risk	Issue addressed or studied	No visibility
- Risk Criticity	Risk mitigation measures	Risk mitigation measures opti- mized and ap-	Risk mitigation measures proven and be-	Few risk mitiga- tion measures identified	No risk mitiga- tion measures identified
Risk criticality is determined according to 4 levels of criticality depending on the assessment of potential consequences pertaining to:		plied by Indus- trials	ing applied by Industrials		
 economy loss, Impact level on environment, population, fauna, flora, 	Experience feedback	Important	Good for consi- dered technolo- gles	Limited feedback for similar situa- tions	No feedback
 Importance of the quantities of dangerous goods stored. 	Regulatory / standard framework	Existing and proven regula- tory and stand-	Regulatory and standard barrl- ers under revl-	Regulatory and standard barri- ers considered	No regulatory and standard framework
No quantitative threshold has been determined on each importance level; instead, risk critically		ard barriers	sion or final	or in develop-	
 Is ranked qualitatively from 1 to 4, corresponding to: 4 : very important, 3 : important. 			stages	ment	
an a market second s	•	-			

pour un développement durable

FIVE 2018, Boras (S), Marlair et al

4 : very Important, 3 : Important. : serious 1 : 1000

Revised PRA \rightarrow renumbering and re-rating incident scenarios through establishment of relating database (abstract of the 52 scenarii identified)

N°	Life Cycle	Id	entifie	ed Hazard	d Causes		Known consequences		Risk criticity (severity in case of oc- currence) quoted fron 1 to 4	Level of man- agementof the risk (existing or lack of framework, identified safety func- tions or not) quoted from 1 to 4	Initial quotation (PRA 2013) Risk criticality / level of control of the risk (reason of quotation change or not)		Recommendations / Comments				
44	Use exclud- ing driving (parking, emergency	Risk	Risk of electric shock - Bectrical ure, N° Life Cycle Id		ical insulation fail-		J	<u>.</u>	2/2 (no documente		ed	_					
45	services in- tervention, etc.) Recycling/ disposal	C			cle	ldentified Hazard		Causes		Known consequences		Risl (se cas cui quo	k criticity everity in se of oc- rrence) oted from 1 to 4	Level of man- agementof the risk (existing or lack of framework, identified safety func- tions or not,) quoted from 1 to 4		Initial quotation (PRA 2013) Risk criticality / level of control of the risk (reason of quotation change or not)	Recommendations / Comments
		-	39	Use (driving)	e sues by contac sues by contac a large quantity water (heavy ra flood,)		ety is- t with ⁄ of ain,	 Bectrical insulation failure, introduction of water inside the battery pack or another organ of the vehicle - External electric short possibly aggravated in case of salt water 		 Bectric shock, short-circuit, battery thermal runaway, flammable gas formation in contact with water (explosive atmosphere formation) delayed EV fire, simultaneous EV fire 			3	3		2/2 (several accidents reported)	 Water tightness and protection against ex- ternal short of the pack as prevention measures Scenario to be indi- cated in manual of use
		40	Use ex ing dri (parking emerger services terventic etc.)	clud- iving ncy in- on,	Simultaneous p ence of differer ard typology for emergency ser during intervent on EV in accide situations (cras and/or battery f EV immersion,	ores- nt haz- r vices tion ental sh, EV fire,)	 Difficulties to o battery fire Simultaneous of electrical, th mechanical an cal (toxicity, ini- bility and corror risks Difficulty to ide EV / hybrid vel Lack of training emergency set 	control presence ermal, d chemi- flamma- psivity) ntify an hicle g of rvices	 Thermal and following fire dispersion, electric shoci corrosive effi with electroly mechanical etions), flammable gato contact with sive atmosph 	toxic effects and/or gas k, ect (contact te), effect (projec- as formation in water (explo- ere formation)		4	3		4/3 (Some progress has been made to ad- dress this issue in terms of drafting guid- ances and training program to some emergency services Lack of significant re- turn from field experi- ence)	 To continue to train emergency services to EV risks in accidental situations Consider emergency service needs at design stage of battery pack and EV 	

PRA EV update: major results

Figure 1 : PRA - Cartography of Identified scenarios In 2013

FIVE 2018, Boras (S), Marlair et al

Fire / thermal abuse testing strategy

□Priorities:

- Contribute to qualify electrode materials/cell options in terms of fire safety aspects (thermal and electrical abuse)
- Provide calibration data for multi-physics TR prediction model, cell level on fresh and aged cells
- Provide calibration data for CFD computation (cell and module level)
- Test reaction-to-fire of key battery pack casing/insulation material for EV battery integrator ; also new electrolytes

pour un développement durait

Testing approaches Protocol and testing device

□ Testing device and instrumentation

Thermal tests performed in BTC 500 from HEL

- 2 thermocouples for regulation measurement positionned on each side of the cell
- 4 thermocouples around the cell
- 4 others thermocouples inside the equipement
- Cell voltage measurement

- 3 🔴
- · Heater wire enrolled around the cell
- Cell positionned at the center of the equipment on a support
- Cell charged at 100% before test

maîtriser le risque pour un développement durable

Testing reaction to fire on key combustible pack materials

- Use of FPA apparatus (ISO 12136) coupled with FTIR instrument (18 gas exploitation method):
 - tests carried out on pack insulation material candidate

pour un développement durable

maîtriser le risau

Protocol and testing device, BTC

Protocol

Example of result from early testing on fresh cell in DEMOBASE

- Adiabatic conditions, heat-wait-search process (ARC) to characterize on-set temperatures of thermal events pertaining to TR phenomena (Use of BTC HEL model 500)
- First series of pouch cells tested in BTC, exploitation pending...

(thermal abuse/Fire) Safety Modeling

Fire/ TR issues (prediction/propagation/ignition) modeling making use of various tools such as:

 TR multiphysics 0D/3D thermal runway model (coded with COMSOL[®]) (improved model from work of Sara Abada et al, Journal of Power Sources 399 (2018) 264–273)

Fig. 2. Surface temperature and voltage of a fresh A123 battery cell measure during the calibration experiment in the BTC. Fig. 4. Experimental and simulated evolution of the average surface temperature of a fresh A123 cell during the oven test.

> ^a IPP Buergies Nouvelles, Rond-Point de léchangeur de Solaise, BP 3, F-69360, Solaise, Prance ^b INERIS, Parc Technologique Alata, BP 2, F-60550, Veneul-en-Halatte, France

Combined experimental and modeling approaches of the thermal runaway of fresh and aged lithium-ion batteries

Sara Abada^{a,b}, Martin Petit^a, Amandine Lecocq^b, Guy Marlair^{b,*}, Valérie Sauvant-Moynot^a,

maîtriser le risque pour un développement durable

FIVE 2018, Boras (S), Marlair et al

François Huet^c

(Thermal abuse/fire) safety modeling (Cont'd)

- Other interactive modeling exercises with various tools to obtain guidance/response of design option at various level of integration of building blocks of the EV (just started) up to recycling issues
 - Modeling platform offered by Infineon (integration level)
 - use of Simcenter Amesim (IFP-EN), based on Siemens PLM software
 - Coupled modeling between INERIS and SAFT with Firefoam v2.4 and NX Simcenter V 11.0.2 for TR propagation issue within pack, with input data from INERIS and IFP-EN)
 - (possibly) scenario-based modeling of EV incident, such as fire-induced toxicty in garage ?
 - see Lecocq et al, J. of Power Source, here below

(CressMari

Scenario-based prediction of Li-ion batteries fire-induced toxicity Amandine Lecocq^a, Gebrekidan Gebresilassie Eshetu^{a, b, c}, Sylvie Grugeon^{b, c}, Nelly Martin^d, Stephane Laruelle^{b, c}, Guy Marlair^{a, *}

^a National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP2, 60550 Verneuil-en-Halatte, France

Orientation CFD simulation at INERIS

□ Fire behavior comparison in an open field, unfortunately

- Battery tests are not designed for CFD code validation
- □ The flame is 3 times longer than the cell and as large as the module
 - Flame length is quite correct
 - Temperature is in the correct order of magnitude
 - But how is representative the boundary condition?

pour un développement durable

But inside a module the flame geometry is complex.

□ The cell opening mode is crucial

- The whole back face
- A part of the back face
- An opening along the external surface

Conclusions / perspectives

- The DEMOBASE project offers a unique experience to develop and promote safer, faster to market innovative affordable EVs
 - looping process allowing progressive improvement;
 - making use of interactive testing and modeling
- Paperwork found useful in terms of guidance from the safety viewpoint, as well as revised PRA
 - some safety goals appear challenging, such as fail-safe module or pack in case of TR activated in one cell;
 - post-crash fire scenario hazard deserves further examination as quite specific compared to ICE similar scenario; alert function quite important for other fire hazard management;
 - however, there is no evidence of increased frequency of fire event in current EV fleet by comparison of ICE car fleet.

□ Still many results to come !

 last but not least, check of performance of genuine concept car resulting from DEMOBASE collaborative research !

pour un développement dural

Thank you !

- guy.marlair@ineris.fr
- <u>amandine.lecocq@ineris.fr</u>
- benjamin.truchot@ineris.fr
- □ <u>martin.petit@ifpen.fr</u>

pietro.perlo@ifevs.com

philippe.desprez@saftbatteries.com

Impore info: Contact: info@demobase-project.eu

NEMOBASE

D1.2 SPECIFICATION OF EV AND RECYCLING

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 769900

